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6.4 Q17

Applying Taylor’s Theorem 6.4.1 with n = 1 at the point = = ¢ shows that for
all x € I,

£(2) = F@) + £/(€)( — ) + 3 f(5)x — o)

for some s € (¢,z) depending on x. By assumption, f”(s) > 0, and so f(z) >
fle)+ f'(¢)(x —c) for all x € I. This proves the result, since the right-hand-side
of the inequality is precisely the equation of the tangent line to the graph of f

at (c, f(c)).

6.4 Q19

Since f is certainly continuous on the interval I = [2,2.2], f(2) = —1 < 0, and
f(2.2) = 1.248 > 0, the intermediate value theorem implies that there exists
2 < r < 2.2 such that f(r) =0.

By the usual rules of differentiation, f/(z) = 322 — 2 and f”(x) = 6z. Since
f"(z) > 0 on I, f'(x) is increasing on I by Theorem 6.2.7, and so f'(z) >
f'(2) =10 for x € I. On the other hand, 0 < f"(x) < 6-2.2 < 14 for z € I.
Applying Newton’s method to the twice differentiable function f, together with
the bounds | f/(z)| > 10 and | f”(x)| < 14 on I, we see (from equation (7) of the

proof of 6.4.7) that for all 2’ € I, the number 2" := 2’ — J{,((”;/,)) satisfies

’x”—r|§K’x’—r2

)

where K = 515 = 0.7.

In order to apply this inequality to the iterates ' = x,, and " = 41, one
needs to ensure that all x,, lie in I. This can be seen! by retracing the proof
of Newton’s method 6.4.7 in finding the interval I* of convergence, and then
verifying that 1 = 2 € I*. Indeed, according to the proof, one can choose a
sufficiently small § < 1/K to define I* := [r — 0,7 + §] so that it is contained
entirely in I. In the setting of this question, because 1/K is already larger than
the size of the interval I = [2,2.2], if » < 2.1, then one may take I* = [2,2r — 2],
and if » > 2.1, then I* = [2r—2.2,2.2]. But f(2.1) = 0.061 > 0 (while f(2) < 0),
the intermediate value theorem applied to f on the interval [2,2.1] implies that

1 Alternatively, one could use elementary means to show that for all z’ € I = [2,2.2], we
also have z’” € I for the function in this question.



2 < r < 2.1. Therefore I* = [2,2r — 2] contains the initial point 21 = 2 and the
sequence (z,,) satisfies

|Zpgr — 7] < 07|20 — 7 for all n € N,

according to the result of 6.4.7.

From this, it follows that the error e,, = x,, —r satisfies|0.7e, 11| < \0.7en|2 <
|O.7el|(2n) for n € N. Putting n = 3 shows that |es] < 0.77€$. Since 21,7 € I
implies that |e;| < 0.2, we have |e4| < 0.77 - 0.28 = 2.10827008 - 10~7 < 5- 1077
and so x4 is accurate to within 6 decimal places.

7.1 Q2

Given a tagged partition Q = {([zi_1,x], t;)}1, with tags t; = z;_; at the left
endpoint of the subintervals, the Riemann sum of a function f : [a,b] — R is by

definition
n

S(£;Q) =Y f(mia) (@i — i),

i=1

Similarly, given a tagged partition Q' = {([z;_1, 2], %)}, with tags t; = x;
at the right endpoint of the subintervals, the Riemann sum of a function f :
[a,b] — R is by definition

S(f; Q/) = Zf(xz)(l’z — Zi—1).

Therefore,

(a) S(f;P)=02-(1—0)+12-(2—1)+22.(4—2) =9,
(b) S(f;P1)=12-(1—0)+22-(2—1) 442 (4—2) = 37,
() S(f;P2) =02 (2—0)+22-(3—2)+32-(4—3) =13,
(d) S(f;P2) =22-(2—0)+3%-(3—2)+42-(4—3) =33.

7.1 Q7

We prove by induction that for any fi,..., fn € Rla,b] and k1,...,k, € R, we
have f = Y"1 kif; € Rla,b] and f;f =>" kK fab fi- By Theorem 7.1.5(a),
if fi € Rla,b] and ki € R, then ki fi € Rla,b] and [ kifi = ki [} f1. So the
statement holds for n = 1. Suppose that the statement holds for n = r. Let
fi,-++, fr41 be functions in R[a,b] and k1, ..., k.11 € R. Then

r+1 T
f= Zkifi = (Zkifi> + krg1frin
i=1 i=1

By the induction hypothesis, >"'_; k;f; € R[a,b]; and by Theorem 7.1.5(a)
kri1fr4+1 € Rla,b]. Therefore, f, being the sum of these two functions, is in



Rla,b] by Theorem 7.1.5(b). Furthermore,
b b r
/ f=/ [(Zkifi> +kr+1fr+1]
@ @ i=1

b r b
=/ (Zhﬁ) +/ krt1fri1 (7.1.5b)
@ \i=1 @

r b b
= Z kz/ fi+kri / fre1 (induction hypothesis and 7.1.5a)
i=1 @ @

r+1

b
:Zlk/a fi.

So the statement holds for n = r 4 1. Thus the result follows by induction.

7.1 Q13

The proof of this question is similar to the one in Example 7.1.4b. Fix any € > 0
and choose 6 = €/4a > 0. Let P be any tagged partition of [a, b] with norm < 4.
Define P; to be the subset of P having its tags in [a, ¢) U (d, b], where op(z) = 0;
and P, be the subset of P having its tags in [c,d], where p(z) = a > 0. Clearly,
S(p;P1) =0 and

S(p;P) = S(p; P1) + S(p; P2) = S(p; Pa).
Let U denote the union of subintervals in P,. We claim that
[c+0,d—6] CcUC[ec—6,d+ 9]

To prove the first inclusion, take u € [c¢ + §,d — §], which by assumption lies in
an interval Iy := [xg_1, 2] of P, and since ||P|| < §, we have xp, — zp_1 < 6.
Then 21 <u<d—-dandzpy >u>c+0. Soxg <zp_1+06<(d—9d)+d=d
and rp_1 >z —06 > ¢+ —0 = c¢. Thus the tag ty € I, must satisfy ¢ < ¢t < d,
i.e. I is an interval of Py and u € I, C U.

The second inclusion is similar. Take uw € U, so that u lies in an interval
Iy, := [z—1, 2] of 752, ie. ¢ <t <d. Since xy—xp_1 < J, we have x_1 > xp—
§>tp—0>c—6d,and xy < 14+ <tp+5 <d+6. Thusu € I}, C [c—§,d+7]
because I is an interval.

U contains an interval of length d — ¢ — 2§ and is contained in an interval of
length d — ¢ + 26. Therfore

a(d —c—28) < S(p;P2) < ald — ¢+ 20).
It follows that

S(p;P) —a(d—c)

:‘S(w;ﬁg) —a(d—c¢)| <2ad < 4ad =e.

Since P is an arbitrary tagged partition with norm < ¢, this completes the
proof.



7.1 Q14

(a) Since 0 < x;—1 < x4,

1
2
T

1= *(3551271) <

2 2 2 _ 2
3 (i1 +@ic1m +a7) = q; < 7.

W =

Because ¢; is the positive square root of the middle term in the inequalities, we
have z;_1 < ¢; < ;.

(1b) Qi) (@ — mic1) = (i — wim1) = (@2 + xiqw + 2) (3 — 321) =
§(x? - 331{1)-

(¢) S(@P) = 30, Qai) (@i — wi) = 37, (e} —ady) = 32 — o) =
%(b3 — a?®). The third equality holds because the sum telescopes.

(d) Fix any € > 0. Using uniform continuity of @ on [a, b], we choose 6 > 0 such
that for any z,y € [a, b] satisfying|z — y| < 6, we have|Q(z) — Q(y)| < ¢/(b—a).
Let P = {(I;,t;)}7_, be any tagged partition of [a,b] with norm < 4, so that
the endpoints of I; satisfies z; — z;_1 < 6 for all i = 1,...,n. Let O have the
same partition points, but with tags g; as above. Since ¢; and ¢; both lie in I;,
we have [t; — ¢;| < § and |Q(t;) — Q(q;)| < €/(b— a). By part (c),

S(@Q:P) = 2 (b° —a?)

—é =‘5(Q;75)—5(Q; Q)‘
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< Z|Q(’5i) - Q(qi)| (wi — xi—1)

n

€ €
< b_aZ(xi—mi_l)— b_a(b—a)—e7

i=1

where we used the triangle inequality in the third step. This proves that Q €
Rla,b] and f(f Q=3(b®—ad).



