
MATH2060 Solution 4

February 2022

6.4 Q17

Applying Taylor’s Theorem 6.4.1 with n = 1 at the point x = c shows that for
all x ∈ I,

f(x) = f(c) + f ′(c)(x− c) +
1

2
f ′′(s)(x− c)2

for some s ∈ (c, x) depending on x. By assumption, f ′′(s) ≥ 0, and so f(x) ≥
f(c)+f ′(c)(x−c) for all x ∈ I. This proves the result, since the right-hand-side
of the inequality is precisely the equation of the tangent line to the graph of f
at (c, f(c)).

6.4 Q19

Since f is certainly continuous on the interval I = [2, 2.2], f(2) = −1 < 0, and
f(2.2) = 1.248 > 0, the intermediate value theorem implies that there exists
2 < r < 2.2 such that f(r) = 0.

By the usual rules of differentiation, f ′(x) = 3x2 − 2 and f ′′(x) = 6x. Since
f ′′(x) ≥ 0 on I, f ′(x) is increasing on I by Theorem 6.2.7, and so f ′(x) ≥
f ′(2) = 10 for x ∈ I. On the other hand, 0 < f ′′(x) ≤ 6 · 2.2 < 14 for x ∈ I.
Applying Newton’s method to the twice differentiable function f , together with
the bounds

∣∣f ′(x)
∣∣ ≥ 10 and

∣∣f ′′(x)
∣∣ ≤ 14 on I, we see (from equation (7) of the

proof of 6.4.7) that for all x′ ∈ I, the number x′′ := x′ − f(x′)
f ′(x′) satisfies∣∣x′′ − r∣∣ ≤ K∣∣x′ − r∣∣2 ,

where K = 14
2·10 = 0.7.

In order to apply this inequality to the iterates x′ = xn and x′′ = xn+1, one
needs to ensure that all xn lie in I. This can be seen1 by retracing the proof
of Newton’s method 6.4.7 in finding the interval I∗ of convergence, and then
verifying that x1 = 2 ∈ I∗. Indeed, according to the proof, one can choose a
sufficiently small δ < 1/K to define I∗ := [r − δ, r + δ] so that it is contained
entirely in I. In the setting of this question, because 1/K is already larger than
the size of the interval I = [2, 2.2], if r ≤ 2.1, then one may take I∗ = [2, 2r−2],
and if r ≥ 2.1, then I∗ = [2r−2.2, 2.2]. But f(2.1) = 0.061 > 0 (while f(2) < 0),
the intermediate value theorem applied to f on the interval [2, 2.1] implies that

1Alternatively, one could use elementary means to show that for all x′ ∈ I = [2, 2.2], we
also have x′′ ∈ I for the function in this question.
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2 < r < 2.1. Therefore I∗ = [2, 2r− 2] contains the initial point x1 = 2 and the
sequence (xn) satisfies

|xn+1 − r| ≤ 0.7|xn − r|2 for all n ∈ N,

according to the result of 6.4.7.
From this, it follows that the error en = xn−r satisfies |0.7en+1| ≤|0.7en|2 ≤

|0.7e1|(2
n)

for n ∈ N. Putting n = 3 shows that |e4| ≤ 0.77e81. Since x1, r ∈ I
implies that |e1| ≤ 0.2, we have |e4| ≤ 0.77 · 0.28 = 2.10827008 · 10−7 < 5 · 10−7

and so x4 is accurate to within 6 decimal places.

7.1 Q2

Given a tagged partition Q̇ = {([xi−1, xi], ti)}ni=1 with tags ti = xi−1 at the left
endpoint of the subintervals, the Riemann sum of a function f : [a, b]→ R is by
definition

S(f ; Q̇) =
n∑

i=1

f(xi−1)(xi − xi−1).

Similarly, given a tagged partition Q̇′ = {([xi−1, xi], ti)}ni=1 with tags ti = xi
at the right endpoint of the subintervals, the Riemann sum of a function f :
[a, b]→ R is by definition

S(f ; Q̇′) =

n∑
i=1

f(xi)(xi − xi−1).

Therefore,

(a) S(f ; Ṗ1) = 02 · (1− 0) + 12 · (2− 1) + 22 · (4− 2) = 9,

(b) S(f ; Ṗ1) = 12 · (1− 0) + 22 · (2− 1) + 42 · (4− 2) = 37,

(c) S(f ; Ṗ2) = 02 · (2− 0) + 22 · (3− 2) + 32 · (4− 3) = 13,

(d) S(f ; Ṗ2) = 22 · (2− 0) + 32 · (3− 2) + 42 · (4− 3) = 33.

7.1 Q7

We prove by induction that for any f1, . . . , fn ∈ R[a, b] and k1, . . . , kn ∈ R, we

have f =
∑n

i=1 kifi ∈ R[a, b] and
∫ b

a
f =

∑n
i=1 ki

∫ b

a
fi. By Theorem 7.1.5(a),

if f1 ∈ R[a, b] and k1 ∈ R, then k1f1 ∈ R[a, b] and
∫ b

a
k1f1 = k1

∫ b

a
f1. So the

statement holds for n = 1. Suppose that the statement holds for n = r. Let
f1, . . . , fr+1 be functions in R[a, b] and k1, . . . , kr+1 ∈ R. Then

f =

r+1∑
i=1

kifi =

(
r∑

i=1

kifi

)
+ kr+1fr+1.

By the induction hypothesis,
∑r

i=1 kifi ∈ R[a, b]; and by Theorem 7.1.5(a)
kr+1fr+1 ∈ R[a, b]. Therefore, f , being the sum of these two functions, is in
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R[a, b] by Theorem 7.1.5(b). Furthermore,∫ b

a

f =

∫ b

a

[(
r∑

i=1

kifi

)
+ kr+1fr+1

]

=

∫ b

a

(
r∑

i=1

kifi

)
+

∫ b

a

kr+1fr+1 (7.1.5b)

=

r∑
i=1

ki

∫ b

a

fi + kr+1

∫ b

a

fr+1 (induction hypothesis and 7.1.5a)

=

r+1∑
i=1

ki

∫ b

a

fi.

So the statement holds for n = r + 1. Thus the result follows by induction.

7.1 Q13

The proof of this question is similar to the one in Example 7.1.4b. Fix any ε > 0
and choose δ = ε/4α > 0. Let Ṗ be any tagged partition of [a, b] with norm < δ.
Define Ṗ1 to be the subset of Ṗ having its tags in [a, c)∪ (d, b], where ϕ(x) = 0;
and Ṗ2 be the subset of Ṗ having its tags in [c, d], where ϕ(x) = α > 0. Clearly,
S(ϕ; Ṗ1) = 0 and

S(ϕ; Ṗ) = S(ϕ; Ṗ1) + S(ϕ; Ṗ2) = S(ϕ; Ṗ2).

Let U denote the union of subintervals in Ṗ2. We claim that

[c+ δ, d− δ] ⊂ U ⊂ [c− δ, d+ δ].

To prove the first inclusion, take u ∈ [c+ δ, d− δ], which by assumption lies in
an interval Ik := [xk−1, xk] of Ṗ, and since ||Ṗ|| < δ, we have xk − xk−1 < δ.
Then xk−1 ≤ u ≤ d− δ and xk ≥ u ≥ c+ δ. So xk < xk−1 + δ ≤ (d− δ) + δ = d
and xk−1 > xk−δ ≥ c+δ−δ = c. Thus the tag tk ∈ Ik must satisfy c ≤ tk ≤ d,
i.e. Ik is an interval of Ṗ2 and u ∈ Ik ⊂ U .

The second inclusion is similar. Take u ∈ U , so that u lies in an interval
Ik := [xk−1, xk] of Ṗ2, i.e. c ≤ tk ≤ d. Since xk−xk−1 < δ, we have xk−1 > xk−
δ ≥ tk−δ ≥ c−δ, and xk < xk−1+δ ≤ tk+δ ≤ d+δ. Thus u ∈ Ik ⊂ [c−δ, d+δ]
because Ik is an interval.

U contains an interval of length d− c− 2δ and is contained in an interval of
length d− c+ 2δ. Therfore

α(d− c− 2δ) ≤ S(ϕ; Ṗ2) ≤ α(d− c+ 2δ).

It follows that∣∣∣S(ϕ; Ṗ)− α(d− c)
∣∣∣ =
∣∣∣S(ϕ; Ṗ2)− α(d− c)

∣∣∣ ≤ 2αδ < 4αδ = ε.

Since Ṗ is an arbitrary tagged partition with norm < δ, this completes the
proof.
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7.1 Q14

(a) Since 0 ≤ xi−1 < xi,

x2i−1 =
1

3
(3x2i−1) ≤ 1

3
(x2i−1 + xi−1xi + x2i ) = q2i ≤ x2i .

Because qi is the positive square root of the middle term in the inequalities, we
have xi−1 ≤ qi ≤ xi.

(b) Q(qi)(xi − xi−1) = q2i (xi − xi−1) = 1
3 (x2i−1 + xi−1xi + x2i )(xi − xi−1) =

1
3 (x3i − x3i−1).

(c) S(Q; Ṗ) =
∑n

i=1Q(qi)(xi − xi−1) = 1
3

∑n
i=1(x3i − x3i−1) = 1

3 (x3n − x30) =
1
3 (b3 − a3). The third equality holds because the sum telescopes.

(d) Fix any ε > 0. Using uniform continuity of Q on [a, b], we choose δ > 0 such
that for any x, y ∈ [a, b] satisfying |x− y| < δ, we have

∣∣Q(x)−Q(y)
∣∣ < ε/(b−a).

Let Ṗ = {(Ii, ti)}ni=1 be any tagged partition of [a, b] with norm < δ, so that
the endpoints of Ii satisfies xi − xi−1 < δ for all i = 1, . . . , n. Let Q̇ have the
same partition points, but with tags qi as above. Since ti and qi both lie in Ii,
we have |ti − qi| < δ and

∣∣Q(ti)−Q(qi)
∣∣ < ε/(b− a). By part (c),∣∣∣∣S(Q; Ṗ)− 1

3
(b3 − a3)

∣∣∣∣ =
∣∣∣S(Q; Ṗ)− S(Q; Q̇)

∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

Q(ti)(xi − xi−1)−
n∑

i=1

Q(qi)(xi − xi−1)

∣∣∣∣∣∣
≤

n∑
i=1

∣∣Q(ti)−Q(qi)
∣∣ (xi − xi−1)

<
ε

b− a

n∑
i=1

(xi − xi−1) =
ε

b− a
(b− a) = ε,

where we used the triangle inequality in the third step. This proves that Q ∈
R[a, b] and

∫ b

a
Q = 1

3 (b3 − a3).
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